通過主觀意識借助實體或者虛擬表現(xiàn)構(gòu)成客觀闡述形態(tài)結(jié)構(gòu)的一種表達目的的物件(物件并不等于物體,不局限于實體與虛擬、不限于平面與立體)。
模型≠商品。任何物件定義為商品之前的研發(fā)過程中形態(tài)均為模型,當(dāng)定義型號、規(guī)格并匹配相應(yīng)價格的時候,模型將會以商品形式呈現(xiàn)出來。
從廣義上講:如果一件事物能隨著另一件事物的改變而改變,那么此事物就是另一件事物的模型。模型的作用就是表達不同概念的性質(zhì),一個概念可以使很多模型發(fā)生不同程度的改變,但只要很少模型就能表達出一個概念的性質(zhì),所以一個概念可以通過參考不同的模型從而改變性質(zhì)的表達形式。
當(dāng)模型與事物發(fā)生聯(lián)系時會產(chǎn)生一個具有性質(zhì)的框架,此性質(zhì)決定模型怎樣隨事物變化
數(shù)學(xué)模型
用數(shù)學(xué)語言描述的一類模型。數(shù)學(xué)模型可以是一個或一組代數(shù)方程、微分方程、差分方程、積分方程或統(tǒng)計學(xué)方程,也可以是它們的某種適當(dāng)?shù)慕M合,通過這些方程定量地或定性地描述系統(tǒng)各變量之間的相互關(guān)系或因果關(guān)系。除了用方程描述的數(shù)學(xué)模型外,還有用其他數(shù)學(xué)工具,如代數(shù)、幾何、拓?fù)?、?shù)理邏輯等描述的模型。需要指出的是,數(shù)學(xué)模型描述的是系統(tǒng)的行為和特征而不是系統(tǒng)的實際結(jié)構(gòu)。
物理模型
也稱實體模型,又可分為實物模型和類比模型。
①實物模型:根據(jù)相似性理論制造的按原系統(tǒng)比例縮?。ㄒ部梢允欠糯蠡蚺c原系統(tǒng)尺寸一樣)的實物,例如風(fēng)洞實驗中的飛機模型,水力系統(tǒng)實驗?zāi)P?,建筑模型,船舶模型等?
②類比模型:在不同的物理學(xué)領(lǐng)域(力學(xué)的、電學(xué)的、熱學(xué)的、流體力學(xué)的等)的系統(tǒng)中各自的變量有時服從相同的規(guī)律,根據(jù)這個共同規(guī)律可以制出物理意義完全不同的比擬和類推的模型。例如在一定條件下由節(jié)流閥和氣容構(gòu)成的氣動系統(tǒng)的壓力響應(yīng)與一個由電阻和電容所構(gòu)成的電路的輸出電壓特性具有相似的規(guī)律,因此可以用比較容易進行實驗的電路來模擬氣動系統(tǒng)。
仿真模型
通過數(shù)字計算機、模擬計算機或混合計算機上運行的程序表達的模型。采用適當(dāng)?shù)姆抡嬲Z言或程序, 物理模型、數(shù)學(xué)模型和結(jié)構(gòu)模型一般能轉(zhuǎn)變?yōu)榉抡婺P?[6] 。關(guān)于不同控制策略或設(shè)計變量對系統(tǒng)的影響,或是系統(tǒng)受到某些擾動后可能產(chǎn)生的影響,是在系統(tǒng)本身上進行實驗,但這并非永遠可行。原因是多方面的,例如:實驗費用可能是昂貴的;系統(tǒng)可能是不穩(wěn)定的,實驗可能破壞系統(tǒng)的平衡,造成危險;系統(tǒng)的時間常數(shù)很大,實驗需要很長時間;待設(shè)計的系統(tǒng)尚不存在等。在這樣的情況下,建立系統(tǒng)的仿真模型是有效的。例如,生物的甲烷化過程是一個絕氧發(fā)酵過程,由于的作用分解而產(chǎn)生甲烷。根據(jù)生物化學(xué)的知識可以建立過程的仿真模型,通過計算機尋求過程的穩(wěn)態(tài)值并且可以研究各種起動方法。這些研究幾乎不可能在系統(tǒng)自身上完成,因為從技術(shù)上很難保持過程處于穩(wěn)態(tài),而且生物甲烷化反應(yīng)的起動過程很慢,需要幾周的時間。但如果利用(仿真)模型在計算機上仿真,則甲烷化反應(yīng)的起動過程只需要幾分鐘的時間。